编程语言应用

注册

 

发新话题 回复该主题

年浙江省绍兴市中考数学试卷参考答 [复制链接]

1#
白癜风容易治疗好吗 http://m.39.net/baidianfeng/qzzt/bdfnzhm/

年浙江省绍兴市中考数学试卷参考答案与试题解析

一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)

1.(4分)实数2,0,,中,为负数的是
  

A.2  B.0  C.  D.

根据负数定义可得答案.

解:实数2,0,,中,为负数的是,

故选:.

此题主要考查了实数,关键是掌握负数定义.

2.(4分)某自动控制器的芯片,可植入000000粒晶体管,这个数字000000用科学记数法可表示为
  

A.  B.  C.  D.

科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.

解:,

故选:.

此题考查科学记数法的表示方法,表示时关键要正确确定的值以及的值.

3.(4分)将如图的七巧板的其中几块,拼成一个多边形,为中心对称图形的是
  

A.  B.  

C.  D.

根据中心对称的定义,结合所给图形即可作出判断.

解:、不是中心对称图形,故本选项不符合题意;

、不是中心对称图形,故本选项不符合题意;

、不是中心对称图形,故本选项不符合题意;

、是中心对称图形,故本选项符合题意.

故选:.

本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转后能够重合.

4.(4分)如图,点,,,,均在上,,,则的度数为
  

A.  B.  C.  D.

首先连接,由圆周角定理即可得的度数,继而求得的度数,然后由圆周角定理,求得的度数.

解:连接,

,,

故选:.

此题考查了圆周角定理.注意准确作出辅助线是解此题的关键.

5.(4分)如图,三角板在灯光照射下形成投影,三角板与其投影的相似比为,且三角板的一边长为.则投影三角板的对应边长为
  

A.  B.  C.  D.

根据对应边的比等于相似比列式进行计算即可得解.

解:设投影三角尺的对应边长为,

三角尺与投影三角尺相似,

解得.

故选:.

本题主要考查相似三角形的应用.利用数学知识解决实际问题是中学数学的重要内容.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.

6.(4分)如图,小球从入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等.则小球从出口落出的概率是
  

A.  B.  C.  D.

根据“在每个交叉口都有向左或向右两种可能,且可能性相等”可知在点、、处都是等可能情况,从而得到在四个出口、、、也都是等可能情况,然后概率的意义列式即可得解.

解:由图可知,在每个交叉口都有向左或向右两种可能,且可能性相等,

小球最终落出的点共有、、、四个,

所以小球从出口落出的概率是:;

故选:.

本题考查了概率的求法,读懂题目信息,得出所给的图形的对称性以及可能性相等是解题的关键,用到的知识点为:概率所求情况数与总情况数之比.

7.(4分)长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为
  

A.4  B.5  C.6  D.7

利用三角形的三边关系列举出所围成三角形的不同情况,通过比较得到结论.

解:①长度分别为5、3、4,能构成三角形,且最长边为5;

②长度分别为2、6、4,不能构成三角形;

③长度分别为2、7、3,不能构成三角形;

综上所述,得到三角形的最长边长为5.

故选:.

本题考查了三角形的三边关系,利用了三角形中三边的关系求解.注意分类讨论,不重不漏.

8.(4分)如图,点为矩形的对称中心,点从点出发沿向点运动,移动到点停止,延长交于点,则四边形形状的变化依次为
  

A.平行四边形正方形平行四边形矩形  

B.平行四边形菱形平行四边形矩形  

C.平行四边形正方形菱形矩形  

D.平行四边形菱形正方形矩形

根据对称中心的定义,根据矩形的性质,可得四边形形状的变化情况.

解:观察图形可知,四边形形状的变化依次为平行四边形菱形平行四边形矩形.

故选:.

考查了中心对称,矩形的性质,平行四边形的判定与性质,菱形的性质,根据与的位置关系即可求解.

9.(4分)如图,等腰直角三角形中,,,将绕点顺时针旋转,得到,连结,过点作交的延长线于点,连结,则的度数
  

A.随着的增大而增大  B.随着的增大而减小  

C.不变  D.随着的增大,先增大后减小

由旋转的性质可得,由等腰三角形的性质和三角形内接和定理可求,由外角的性质可求,即可求解.

解:将绕点顺时针旋转,得到,

,,

,,,

的度数是定值,

故选:.

本题考查了旋转的性质,等腰三角形的性质,三角形的外角性质,灵活运用这些性质解决问题是本题的关键.

10.(4分)同型号的甲、乙两辆车加满气体燃料后均可行驶,它们各自单独行驶并返回的最远距离是.现在它们都从地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回地,而乙车继续行驶,到地后再行驶返回地.则地最远可距离地
  

A.  B.  C.  D.

设甲行驶到地时返回,到达地燃料用完,乙行驶到地再返回地时燃料用完,根据题意得关于和的二元一次方程组,求解即可.

解:设甲行驶到地时返回,到达地燃料用完,乙行驶到地再返回地时燃料用完,如图:

设,,根据题意得:

解得:.

乙在地时加注行驶的燃料,则的最大长度是.

故选:.

本题考查了二元一次方程组在行程问题中的应用,理清题中的数量关系正确列出方程组是解题的关键.

二、填空题(本大题有6小题,每小题5分,共30分)

11.(5分)分解因式:
  .

分解因式中,可知是2项式,没有公因式,用平方差公式分解即可.

解:.

故答案为:.

本题考查了因式分解运用公式法,熟练掌握平方差公式的结构特点是解题的关键.

12.(5分)若关于,的二元一次方程组的解为则多项式可以是 答案不唯一,如 (写出一个即可).

根据方程组的解的定义,为应该满足所写方程组的每一个方程.因此,可以围绕为列一组算式,然后用,代换即可.

解:关于,的二元一次方程组的解为,

而,

多项式可以是答案不唯一,如.

故答案为:答案不唯一,如.

考查了二元一次方程组的解,本题是开放题,注意方程组的解的定义.

13.(5分)如图1,直角三角形纸片的一条直角边长为2,剪四块这样的直角三角形纸片,把它们按图2放入一个边长为3的正方形中(纸片在结合部分不重叠无缝隙),则图2中阴影部分面积为
  .

根据题意和图形,可以得到直角三角形的一条直角边的长和斜边的长,从而可以得到直角三角形的另一条直角边长,再根据图形,可知阴影部分的面积是四个直角三角形的面积,然后代入数据计算即可.

解:由题意可得,

直角三角形的斜边长为3,一条直角边长为2,

故直角三角形的另一条直角边长为:,

故阴影部分的面积是:,

故答案为:.

本题考查正方形的性质、勾股定理、三角形的面积,解答本题的关键是明确题意,利用数形结合的思想解答.

14.(5分)如图,已知边长为2的等边三角形中,分别以点,为圆心,为半径作弧,两弧交于点,连结.若的长为,则的值为 2或 .

由作图知,点在的垂直平分线上,得到点在的垂直平分线上,求得垂直平分,设垂足为,得到,当点、在的两侧时,如图,当点、在的同侧时,如图,解直角三角形即可得到结论.

解:由作图知,点在的垂直平分线上,

是等边三角形,

点在的垂直平分线上,

垂直平分,

设垂足为,

当点、在的两侧时,如图,

当点、在的同侧时,如图,

综上所述,的值为2或,

故答案为:2或.

本题考查了勾股定理,等边三角形的性质,线段垂直平分线的性质.正确的作出图形是解题的关键.

15.(5分)有两种消费券:券,满60元减20元,券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元、30元.小敏有一张券,小聪有一张券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款元,则所购商品的标价是 或85 元.

可设所购商品的标价是元,根据小敏有一张券,小聪有一张券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款元,分①所购商品的标价小于90元;②所购商品的标价大于90元;列出方程即可求解.

解:设所购商品的标价是元,则

①所购商品的标价小于90元,

解得;

②所购商品的标价大于90元,

解得.

故所购商品的标价是或85元.

故答案为:或85.

考查了一元一次方程的应用,属于商品销售问题,注意分两种情况进行讨论求解.

16.(5分)将两条邻边长分别为,1的矩形纸片剪成四个等腰三角形纸片(无余纸片),各种剪法剪出的等腰三角形中,其中一个等腰三角形的腰长可以是下列数中的 ①②③④ (填序号).

①,②1,③,④,⑤.

首先作出图形,再根据矩形的性质和等腰三角形的判定即可求解.

解:如图所示:

则其中一个等腰三角形的腰长可以是①,②1,③,④,不可以是.

故答案为:①②③④.

考查了矩形的性质,等腰三角形的判定与性质,根据题意作出图形是解题的关键.

三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题8分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)

17.(8分)(1)计算:.

(2)化简:.

(1)直接利用特殊角的三角函数值以及二次根式的性质分别化简得出答案;

(2)直接利用完全平方公式以及单项式乘以多项式运算法则计算得出答案.

解:(1)原式

(2)

此题主要考查了实数运算以及完全平方公式以及单项式乘以多项式运算,正确掌握相关运算法则是解题关键.

18.(8分)如图,点是的边的中点,连结并延长,交的延长线于点.

(1)若的长为2,求的长.

(2)若,试添加一个条件,并写出的度数.

(1)由平行四边形的性质得出,则,,由点是的中点,得出,由证得,即可得出结果;

(2)添加一个条件当时,由直角三角形的性质即可得出结果(答案不唯一).

解:(1)四边形是平行四边形,

,,

点是的中点,

在和中,,

(2),

添加一个条件:当时,(答案不唯一).

本题考查了平行四边形的性质、全等三角形的判定与性质、平行线的性质、三角形内角和定理等知识,熟练掌握全等三角形的判定与性质是解题的关键.

19.(8分)一只羽毛球的重量合格标准是5.0克克(含5.0克,不含5.2克),某厂对4月份生产的羽毛球重量进行抽样检验,并将所得数据绘制成如图统计图表.

4月份生产的羽毛球重量统计表

      

组别

              

重量(克

              

数量(只

                                                                                

                                        

                                        

30

      

(1)求表中的值及图中组扇形的圆心角的度数.

(2)问这些抽样检验的羽毛球中,合格率是多少?如果购得4月份生产的羽毛球10筒(每筒12只),估计所购得的羽毛球中,非合格品的羽毛球有多少只?

(1)图表中“组”的频数为只,占抽查总数的,可求出抽查总数,进而求出“组”的频数,即的值;求出“组”所占总数的百分比,即可求出相应的圆心角的度数;

(2)计算“组”“组”的频率的和即为合格率,求出“不合格”所占的百分比,即可求出不合格的数量.

解:(1)(只,(只

即:,

答:表中的值为20,图中组扇形的圆心角的度数为;

(2),

(只,

答:这次抽样检验的合格率是,所购得的羽毛球中,非合格品的羽毛球有6只.

考查统计表、扇形统计图的意义和制作方法,理解图表中的数量和数量之间的关系,是正确计算的前提.

20.(8分)我国传统的计重工具秤的应用,方便了人们的生活.如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为(厘米)时,秤钩所挂物重为(斤,则是的一次函数.下表中为若干次称重时所记录的一些数据.

      

(厘米)

              

1

              

2

              

4

              

7

              

11

              

12

            

(斤

              

0.75

              

1.00

              

1.50

              

2.75

              

3.25

              

3.50

      

(1)在上表,的数据中,发现有一对数据记录错误.在图2中,通过描点的方法,观察判断哪一对是错误的?

(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?

(1)利用描点法画出图形即可判断.

(2)设函数关系式为,利用待定系数法解决问题即可.

解:(1)观察图象可知:,这组数据错误.

(2)设,把,,,代入可得,

解得,

当时,,

答:秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤.

本题考查一次函数的应用,待定系数法等知识,解题的关键是理解题意,灵活运用所学知识解决问题.

21.(10分)如图1为搭建在地面上的遮阳棚,图2、图3是遮阳棚支架的示意图.遮阳棚支架由相同的菱形和相同的等腰三角形构成,滑块,可分别沿等长的立柱,上下移动,.

(1)若移动滑块使,求的度数和棚宽的长.

(2)当由变为时,问棚宽是增加还是减少?增加或减少了多少?

(结果精确到,参考数据:,,,

(1)根据等边三角形的性质得到,连接并延长交于,则,求得,于是得到结论;

(2)解直角三角形即可得到结论.

解:(1),

是等边三角形,

连接并延长交于,则,

是等边三角形,

(2),

答:当由变为时,棚宽是减少了,减少了.

本题考查了解直角三角形的应用,菱形的性质,等边三角形的性质,正确的理解题意是解题的关键.

22.(12分)问题:如图,在中,.在的延长线上取点,,作,使.若,,求的度数.

答案:.

思考:(1)如果把以上“问题”中的条件“”去掉,其余条件不变,那么的度数会改变吗?说明理由.

(2)如果把以上“问题”中的条件“”去掉,再将“”改为“”,其余条件不变,求的度数.

(1)根据等腰三角形的性质得到,①求得,②由①,②即可得到结论;

(2)设,根据三角形的内角和定理和等腰三角形的性质即可得到结论.

解:(1)的度数不会改变;

,①

,②

由①,②得,;

(2)设,

则,,

本题考查了等腰三角形的性质,三角形的内角和定理,正确的识别图形是解题的关键.

23.(12分)如图1,排球场长为,宽为,网高为,队员站在底线点处发球,球从点的正上方的点发出,运动路线是抛物线的一部分,当球运动到最高点时,高度为,即,这时水平距离,以直线为轴,直线为轴,建立平面直角坐标系,如图2.

(1)若球向正前方运动(即轴垂直于底线),求球运动的高度与水平距离之间的函数关系式(不必写出取值范围).并判断这次发球能否过网?是否出界?说明理由.

(2)若球过网后的落点是对方场地①号位内的点(如图1,点距底线,边线,问发球点在底线上的哪个位置?(参考数据:取

(1)求出抛物线表达式;再确定和时,对应函数的值即可求解;

(2)当时,,解得:或(舍去,求出,即可求解.

解:(1)设抛物线的表达式为:,

将,代入上式并解得:,

故抛物线的表达式为:;

当时,,

当时,,

故这次发球过网,但是出界了;

(2)如图,分别过点作底线、边线的平行线、交于点,

在中,,

当时,,解得:或(舍去,

,而,

故,

发球点在底线上且距右边线0.1米处.

本题考查的是二次函数综合运用,关键是弄清楚题意,明确变量的代表的实际意义.

24.(14分)如图1,矩形中,,,中,,,,的延长线相交于点,且,,.将绕点逆时针旋转得到△.

(1)当时,求点到直线的距离.

(2)在图1中,取的中点,连结,如图2.

①当与矩形的一条边平行时,求点到直线的距离.

②当线段与矩形的边有且只有一个交点时,求该交点到直线的距离的取值范围.

(1)如图1中,过点作于.解直角三角形求出即可.

(2)①分两种情形:如图2中,当时,过点作于.如图3中,当时,过点作于.分别求出,即可.

②设为所求的距离.第一种情形:如图4中,当点落在上时,连接,延长交于.如图5中,当点落在上时,连接,过点作于.结合图象可得结论.

第二种情形:当与相交,不与相交时,当点在上时,,即,如图6中,当点落在上时,设交于,过点作于,过点作交于,连接.求出可得结论.

第三种情形:当经过点时,如图7中,显然.综上所述可得结论.

解:(1)如图1中,

过点作于.

点到直线的距离为.

(2)①如图2中,当时,过点作于.

△是等腰直角三角形,

点到直线的距离为.

如图3中,当时,过点作于.

同法可证△是等腰直角三角形,

点到直线的距离为.

②设为所求的距离.

第一种情形:如图4中,当点落在上时,连接,延长交于.

,,,

,即,

如图5中,当点落在上时,连接,过点作于.

,,

第二种情形:当与相交,不与相交时,当点在上时,,即,

如图6中,当点落在上时,设交于,过点作于,过点作交于,连接.

,,

,,,

,,

△△,

,即

第三种情形:当经过点时,如图7中,显然.

综上所述,或.

本题属于四边形综合题,考查了矩形的性质,旋转变换,解直角三角形,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用特殊位置解决数学问题,属于中考压轴题.

声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布

日期:/7/:10:18;用户:数学;邮箱:zyerz2

xyh.
分享 转发
TOP
发新话题 回复该主题