编程语言应用

首页 » 常识 » 预防 » 大数据研究常用软件工具与应用场景研究
TUhjnbcbe - 2020/11/8 23:30:00
剩余88天,一起走过75.89%

今天,你社会学了没?

授权

发布

作者:马亮

HCR大数据平台部

来源:慧辰资讯HCR

编辑:蛤蛤

社长说

小明:Excel玩的转,SPSS外观美,SAS效率高,R语言免费。各有优点,为何不合成为一个软件?

老师:用芝麻、花生、瓜子、核桃、杏仁做成的五仁月饼,你喜欢不?

大数据研究

常用软件工具与应用场景

如今,大数据日益成为研究行业的重要研究目标。面对其高数据量、多维度与异构化的特点,以及分析方法思路的扩展,传统统计工具已经难以应对。工欲善其事,必先利其器。众多新的软件分析工具作为深入大数据洞察研究的重要助力,也成为数据科学家所必须掌握的知识技能。然而,现实情况的复杂性决定了并不存在解决一切问题的终极工具。实际研究过程中,需要根据实际情况灵活选择最合适的工具(甚至多种工具组合使用),才能更好的完成研究探索。

然而,现实情况的复杂性决定了并不存在解决一切问题的终极工具。实际研究过程中,需要根据实际情况灵活选择最合适的工具(甚至多种工具组合使用),才能更好的完成研究探索。

为此,本文针对研究人员(非技术人员)的实际情况,介绍当前大数据研究涉及的一些主要工具软件(因为相关软件众多,只介绍常用的),并进一步阐述其应用特点和适合的场景,以便于研究人员能有的放矢的学习和使用。

?传统分析/商业统计

Excel、SPSS、SAS这三者对于研究人员而言并不陌生。

◆Excel作为电子表格软件,适合简单统计(分组/求和等)需求,由于其方便好用,功能也能满足很多场景需要,所以实际成为研究人员最常用的软件工具。其缺点在于功能单一,且可处理数据规模小(这一点让很多研究人员尤为头疼)。这两年Excel在大数据方面(如地理可视化和网络关系分析)上也作出了一些增强,但应用能力有限。

SPSS(SPSSStatistics)和SAS作为商业统计软件,提供研究常用的经典统计分析(如回归、方差、因子、多变量分析等)处理。

◆SPSS轻量、易于使用,但功能相对较少,适合常规基本统计分析

◆SAS功能丰富而强大(包括绘图能力),且支持编程扩展其分析能力,适合复杂与高要求的统计性分析。

上述三个软件在面对大数据环境出现了各种不适,具体不再赘述。但这并不代表其没有使用价值。如果使用传统研究方法论分析大数据时,海量原始数据资源经过前期处理(如降维和统计汇总等)得到的中间研究结果,就很适合使用它们进行进一步研究。

?数据挖掘

数据挖掘作为大数据应用的重要领域,在传统统计分析基础上,更强调提供机器学习的方法,

1
查看完整版本: 大数据研究常用软件工具与应用场景研究