年浙江省湖州市中考数学试卷参考答案与试题解析
一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.请选出各题中一个最符合题意的选项,并在答题卷上将相应题次中对应字母的方框涂黑,不选、多选、错选均不给分.
1.(3分)数4的算术平方根是
A.2 B. C. D.
算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.
解:的平方为4,
的算术平方根为2.
故选:.
此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.
2.(3分)近几年来,我国经济规模不断扩大,综合国力显著增强.年我国国内生产总值约亿元,则数用科学记数法可表示为
A. B. C. D.
科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.
解:将用科学记数法表示为:.
故选:.
此题考查科学记数法的表示方法,表示时关键要正确确定的值以及的值.
3.(3分)已知某几何体的三视图如图所示,则该几何体可能是
A. B. C. D.
根据两个视图是长方形得出该几何体是锥体,再根据俯视图是圆,得出几何体是圆锥.
解:主视图和左视图是三角形,
几何体是锥体,
俯视图的大致轮廓是圆,
该几何体是圆锥.
故选:.
此题考查由三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.
4.(3分)如图,已知四边形内接于,,则的度数是
A. B. C. D.
根据圆内接四边形的性质即可得到结论.
解:四边形内接于,,
,
故选:.
本题考查了圆内接四边形的性质,熟练掌握圆内接四边形的性质是解题的关键.
5.(3分)数据,0,3,4,4的平均数是
A.4 B.3 C.2.5 D.2
根据题目中的数据,可以求得这组数据的平均数,本题得以解决.
解:,
故选:.
本题考查算术平均数,解答本题的关键是明确算术平均数的计算方法.
6.(3分)已知关于的一元二次方程,则下列关于该方程根的判断,正确的是
A.有两个不相等的实数根
B.有两个相等的实数根
C.没有实数根
D.实数根的个数与实数的取值有关
先计算出判别式的值,再根据非负数的性质判断△,然后利用判别式的意义对各选项进行判断.
解:△,
方程有两个不相等的实数根.
故选:.
本题考查了根的判别式:一元二次方程的根与△有如下关系:当△时,方程有两个不相等的实数根;当△时,方程有两个相等的实数根;当△时,方程无实数根.
7.(3分)四边形具有不稳定性,对于四条边长确定的四边形.当内角度数发生变化时,其形状也会随之改变.如图,改变正方形的内角,正方形变为菱形.若,则菱形的面积与正方形的面积之比是
A.1 B. C. D.
根据角所对的直角边等于斜边的一半可知菱形的高等于的一半,再根据正方形的面积公式和平行四边形的面积公式即可得解.
解:根据题意可知菱形的高等于的一半,
菱形的面积为,正方形的面积为.
菱形的面积与正方形的面积之比是.
故选:.
本题主要考查了正方形与菱形的面积,熟知角所对的直角边等于斜边的一半是解答本题的关键.
8.(3分)已知在平面直角坐标系中,直线和直线分别交轴于点和点.则下列直线中,与轴的交点不在线段上的直线是
A. B. C. D.
求得、的坐标,然后分别求得各个直线与的交点,进行比较即可得出结论.
解:直线和直线分别交轴于点和点.
,
、与轴的交点为;故直线与轴的交点在线段上;
、与轴的交点为,;故直线与轴的交点在线段上;
、与轴的交点为,;故直线与轴的交点不在线段上;
、与轴的交点为,;故直线与轴的交点在线段上;
故选:.
本题考查了一次函数图象上点的坐标特征,图象上的点的坐标适合解析式.
9.(3分)如图,已知是斜边上的高线,.以为圆心,为半径的圆交于点,过点作的切线,交于点.则下列结论中错误的是
A. B. C. D.
如图,连接.想办法证明选项,,正确即可解决问题.
解:如图,连接.
是半径,,
是的切线,
是的切线,
,故选项正确,
,,
,
是切线,
,
,
,
,
,故选项正确,
,,,
,
,
,,,
,
,
,
,故选项正确,
故选:.
本题考查切线的判定和性质,等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
10.(3分)七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形可以制作一副中国七巧板或一副日本七巧板,如图1所示.分别用这两副七巧板试拼如图2中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是
A.1和1 B.1和2 C.2和1 D.2和2
根据要求拼平行四边形矩形即可.
解:中国七巧板和日本七巧板能拼成的个数都是2,如图所示:
故选:.
本题考查七巧板,正方形的性质,平行四边形的性质,矩形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
二、填空题(本题有6小题,每小题4分,共24分)
11.(4分)计算:
.
本题需先根据有理数的减法法则,判断出结果的符号,再把绝对值合并即可.
解:
故答案为:
本题主要考查了有理数的减法,在解题时要注意结果的符号是本题的关键.
12.(4分)化简:
.
直接将分母分解因式,进而化简得出答案.
解:
.
故答案为:.
此题主要考查了约分,正确分解因式是解题关键.
13.(4分)如图,已知是半圆的直径,弦,,,则与之间的距离是 3 .
过点作于,连接,如图,根据垂径定理得到,再利用勾股定理计算出,从而得到与之间的距离.
解:过点作于,连接,如图,则,
在中,,
所以与之间的距离是3.
故答案为3.
本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
14.(4分)在一个布袋里放有1个白球和2个红球,它们除颜色外其余都相同,从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球.将2个红球分别记为红Ⅰ,红Ⅱ,两次摸球的所有可能的结果如表所示,
第二次
第一次
白
红Ⅰ
红Ⅱ
白
白,白
白,红Ⅰ
白,红Ⅱ
红Ⅰ
红Ⅰ,白
红Ⅰ,红Ⅰ
红Ⅰ,红Ⅱ
红Ⅱ
红Ⅱ,白
红Ⅱ,红Ⅰ
红Ⅱ,红Ⅱ
则两次摸出的球都是红球的概率是
.
根据图表可知共有9种等可能的结果,再找出两次摸出的球都是红球的情况数,然后根据概率公式即可得出答案.
解:根据图表给可知,共有9种等可能的结果,两次摸出的球都是红球的有4种,
则两次摸出的球都是红球的概率为;
故答案为:.
此题考查的是列表法求概率.用到的知识点为:概率所求情况数与总情况数之比.
15.(4分)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,顶点都是格点的三角形称为格点三角形.如图,已知是网格图形中的格点三角形,则该图中所有与相似的格点三角形中.面积最大的三角形的斜边长是
.
根据的各边长得出与其相似的三角形的两直角边之比为,在的网格图形中可得出与相似的三角形的短直角边长应小于4,在图中尝试可画出符合题意的最大三角形,从而其斜边长可得.
解:在中,,,
,,
与相似的格点三角形的两直角边的比值为,
若该三角形最短边长为4,则另一直角边长为8,但在网格图形中,最长线段为,但此时画出的直角三角形为等腰直角三角形,从而画不出端点都在格点且长为8的线段,故最短直角边长应小于4,在图中尝试,可画出,,的三角形,
,
,
,
此时的面积为:,为面积最大的三角形,其斜边长为:.
故答案为:.
本题考查了相似三角形的判定,明确相似三角形的判定定理并数形结合是解题的关键.
16.(4分)如图,已知在平面直角坐标系中,的直角顶点在轴的正半轴上,点在第一象限,反比例函数的图象经过的中点.交于点,连结.若的面积是2,则的值是
.
作辅助线,构建直角三角形,利用反比例函数的几何意义得到,根据的中点,利用得到面积比为,代入可得结论.
解:连接,过作,交轴于,
,反比例函数的图象经过的中点,
,,
,
,
,
,
,
,
故答案为:.
本题考查了反比例函数比例系数的几何意义:在反比例函数图象中任取一点,过这一个点向轴和轴分别作垂线,与坐标轴围成的矩形的面积是定值.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.也考查了相似三角形的判定与性质.
三、解答题(本题有8小题,共66分)
17.(6分)计算:.
首先利用二次根式的性质化简二次根式,利用绝对值的性质计算绝对值,然后再算加减即可.
解:原式.
此题主要考查了二次根式的加减,关键是掌握计算顺序,掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.
18.(6分)解不等式组.
先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解.
解:,
解①得;
解②得.
故不等式组的解集为.
考查了解一元一次不等式组,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
19.(6分)有一种升降熨烫台如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整熨烫台的高度.图2是这种升降熨烫台的平面示意图.和是两根相同长度的活动支撑杆,点是它们的连接点,,表示熨烫台的高度.
(1)如图.若,,求的值;
(2)爱动脑筋的小明发现,当家里这种升降熨烫台的高度为时,两根支撑杆的夹角是(如图.求该熨烫台支撑杆的长度(结果精确到.
(参考数据:,,,.
(1)过点作于,根据等腰三角形的性质得到,根据三角函数的定义即可得到结论;
(2)过点作于,根据等腰三角形的性质和三角函数的定义即可得到结论.
解:(1)过点作于,
,,
,
;
(2)过点作于,
,,
,
,
即该熨烫台支撑杆的长度约为.
本题考查了解直角三角形的应用,等腰三角形的性质,正确的识别图形是解题的关键.
20.(8分)为了解学生对网上在线学习效果的满意度,某校设置了:非常满意、满意、基本满意、不满意四个选项,随机抽查了部分学生,要求每名学生都只选其中的一项,并将抽查结果绘制成如图统计图(不完整).
请根据图中信息解答下列问题:
(1)求被抽查的学生人数,并补全条形统计图;(温馨提示:请画在答题卷相对应的图上)
(2)求扇形统计图中表示“满意”的扇形的圆心角度数;
(3)若该校共有名学生参与网上在线学习,根据抽查结果,试估计该校对学习效果的满意度是“非常满意”或“满意”的学生共有多少人?
(1)从两个统计图中可知,在抽查人数中,“非常满意”的人数为20人,占调查人数的,可求出调查人数,进而求出“基本满意”的人数,即可补全条形统计图;
(2)样本中“满意”占调查人数的,即,因此相应的圆心角的度数为的;
(3)样本中“非常满意”或“满意”的占调查人数的,进而估计总体中“非常满意”或“满意”的人数.
解:(1)抽查的学生数:(人,
抽查人数中“基本满意”人数:(人,补全的条形统计图如图所示:
(2),
答:扇形统计图中表示“满意”的扇形的圆心角度数为;
(3)(人,
答:该校共有名学生中“非常满意”或“满意”的约有人.
考查扇形统计图、条形统计图的意义和制作方法,从统计图中获取数量和数量之间的关系,是解决问题的前提,样本估计总体是统计中常用的方法.
21.(8分)如图,已知是的内接三角形,是的直径,连结,平分.
(1)求证:;
(2)若,求的长.
(1)由角平分线的性质和圆周角定理可得;
(2)由圆周角定理可得,由弧长公式可求解.
解:(1)平分,
,
,
;
(2),
,
是的直径,,
的长.
本题考查了三角形的外接圆和外心,圆周角定理,弧长公式等知识,灵活运用这些性质解决问题是本题的关键.
22.(10分)某企业承接了20件产品的生产任务,计划安排甲、乙两个车间的共50名工人,合作生产20天完成.已知甲、乙两个车间利用现有设备,工人的工作效率为:甲车间每人每天生产25件,乙车间每人每天生产30件.
(1)求甲、乙两个车间各有多少名工人参与生产?
(2)为了提前完成生产任务,该企业设计了两种方案:
方案一甲车间租用先进生产设备,工人的工作效率可提高,乙车间维持不变.
方案二乙车间再临时招聘若干名工人(工作效率与原工人相同),甲车间维持不变.
设计的这两种方案,企业完成生产任务的时间相同.
①求乙车间需临时招聘的工人数;
②若甲车间租用设备的租金每天元,租用期间另需一次性支付运输等费用元;乙车间需支付临时招聘的工人每人每天元.问:从新增加的费用考虑,应选择哪种方案能更节省开支?请说明理由.
(1)设甲车间有名工人参与生产,乙车间各有名工人参与生产,由题意得关于和的方程组,求解即可.
(2)①设方案二中乙车间需临时招聘名工人,由题意,以企业完成生产任务的时间为等量关系,列出关于的分式方程,求解并检验即可;②用生产任务数量20除以方案一中甲和乙完成的生产任务之和可得企业完成生产任务的时间,然后分别按方案一和方案二计算费用并比较大小即可.
解:(1)设甲车间有名工人参与生产,乙车间各有名工人参与生产,由题意得:
,
解得.
甲车间有30名工人参与生产,乙车间各有20名工人参与生产.
(2)①设方案二中乙车间需临时招聘名工人,由题意得:
,
解得.
经检验,是原方程的解,且符合题意.
乙车间需临时招聘5名工人.
②企业完成生产任务所需的时间为:
(天.
选择方案一需增加的费用为(元.
选择方案二需增加的费用为(元.
,
选择方案一能更节省开支.
本题考查了二元一次方程组和分式方程在实际问题中的应用,理清题中的数量关系是解题的关键.
23.(10分)已知在中,,是边上的一点,将沿着过点的直线折叠,使点落在边的点处(不与点,重合),折痕交边于点.
(1)特例感知如图1,若,是的中点,求证:;
(2)变式求异如图2,若,,,过点作于点,求和的长;
(3)化归探究如图3,若,,且当时,存在两次不同的折叠,使点落在边上两个不同的位置,请直接写出的取值范围.
(1)证明是等边三角形即可解决问题.
(2)分两种情形:情形一:当点落在线段上的点处时,如图中.情形二:当点落在线段上的点处时,如图中,分别求解即可.
(3)如图3中,过点作于,过点作于.求出时的值,结合图形即可判断.
(1)证明:,,
是等边三角形,
,,
由题意,得,,
,
使得等边三角形,
.
(2)解:,,
,
,
,
,
,
,
,
,
将沿过点的直线折叠,
情形一:当点落在线段上的点处时,如图中,
,
,
,
,
情形二:当点落在线段上的点处时,如图中,
同法可证,
,
综上所述,满足条件的的值为或.
(3)如图3中,过点作于,过点作于.
,,
,
,
当时,设,则,
,
,
,
,
观察图形可知当时,存在两次不同的折叠,使点落在边上两个不同的位置.
本题考查几何变换综合题,考查了等边三角形的判定和性质,解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.
24.(12分)如图,已知在平面直角坐标系中,抛物线的顶点为,与轴的交点为.过点的直线与抛物线交于另一点(点在对称轴左侧),点在的延长线上,连结,,和.
(1)如图1,当轴时,
①已知点的坐标是,求抛物线的解析式;
②若四边形是平行四边形,求证:.
(2)如图2,若,,是否存在这样的点,使四边形是平行四边形?若存在,求出点的坐标;若不存在,请说明理由.
(1)①先确定出点的坐标,再用待定系数法即可得出结论;
②先确定出抛物线的顶点坐标,进而得出,再判断出,得出,即可得出结论;
(2)先判断出抛物线的顶点坐标,设点,,
判断出,得出,,再判断出,得出,进而求出的值,得出点的纵坐标为,进而判断出点的坐标为,,进而得出,
,,进而求出,即可得出结论.
解:(1)①轴,点,
,
将点,代入抛物线解析式中,得,
,
抛物线的解析式为;
②如图1,过点作轴于,交于点,
轴,
,
点是抛物线的顶点坐标,
,,
,
四边形是平行四边形,
,,
,
,
,
,
,
即;
(2)如图2,.
抛物线的解析式为,
顶点坐标,
假设存在这样的点使四边形是平行四边形,
设点,,
过点作轴于点,交于,
,
四边形是平行四边形,
,,
,
,
,,
过点作轴于,交于,
,
,
,
,,
,
,
点的纵坐标为,
轴,
点的坐标为,,
,
点的坐标为,
,
,
,
,
,
,
,
点纵坐标为,
,,
存在这样的点,使四边形是平行四边形.
此题是二次函数综合题,主要考查了待定系数法,平行线的性质,全等三角形的判定和性质,相似三角形的判定和性质,构造出是解本题的关键.
欢迎到洪老师讲数学