编程语言应用

首页 » 常识 » 常识 » 小学数学典型应用题五差倍问题
TUhjnbcbe - 2021/6/29 21:52:00

小学数学中把含有数量关系的实际问题用语言或文字叙述出来,这样所形成的题目叫做应用题。任何一道应用题都由两部分构成,第一部分是已知条件(简称条件),第二部分是所求问题(简称问题)。

差倍问题已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。两个数的差÷(几倍-1)=较小的数较小的数×几倍=较大的数简单的题目直接利用公式,复杂的题目变通后利用公式。例1:

莉莉的科技书比故事书多16本,科技书是故事书3倍,莉莉有科技书()本。

A、8

B、12

C、16

D、24

解:

1、解决差倍问题,可以画线段图解决,也可以直接套用公式解决。

2、把故事书的本数看作1倍数,科技书的本数就是3倍数,科技书比故事书多16本,所以根据差倍公式两个数的差÷(几倍-1)=较小的数,可以求出故事书有16÷2=8本。

3、根据差倍公式较小的数×几倍=较大的数,可以求出科技书有8×3=24本。

例2:

甲桶油是乙桶油4倍,如果从甲桶倒出15千克给乙桶,两桶油的重量就相等了,则原来甲桶有油____千克,乙桶有油____千克。

解:

1、根据题意,从甲桶倒出15千克给乙桶,两桶油的重量就相等了,说明原来甲桶油比乙桶油多15×2=30(千克)。

2、根据差倍公式两个数的差÷(几倍-1)=较小的数,可以求出乙桶有油30÷(4-1)=10(千克)。

3、根据差倍公式较小的数×几倍=较大的数,可以求出甲桶原有油10×4=40(千克)。例3:

每件成品需要5个甲零件,2个乙零件。开始时,甲零件的数量是乙零件数量的2倍,加工了30个成品之后甲零件和乙零件的数量一样多,那么还可以加工_____个成品。

解:

1、加工一个成品,甲零件比乙零件多用5-2=3(个),加工30个成品,甲零件比乙零件多用3×30=90(个)。根据“加工了30个成品之后甲零件和乙零件的数量一样多”说明原来甲零件比乙零件多90个。。

2、把乙原来的零件数看成1倍,甲就是这样的2倍,甲比乙多1倍,对应90个,求出乙原来有90÷(2-1)=90(个)

3、那么甲原来有90×2=(个)零件。

4、每件成品需要5个甲零件,2个乙零件,那么加工30个成品,甲零件用了5×30=(个),乙零件用了2×30=60(个),所以甲零件还剩-=30(个),乙零件还剩90-60=30(个)。剩下的甲零件还能做30÷5=6(个)成品,剩下的乙零件还能做30÷2=15(个)成品。因为每件成品需要甲、乙两种零件共同完成,所以剩下的零件数还可以加工6个成品。

小学数学典型应用题六(年龄问题)

小学数学中把含有数量关系的实际问题用语言或文字叙述出来,这样所形成的题目叫做应用题。任何一道应用题都由两部分构成,第一部分是已知条件(简称条件),第二部分是所求问题(简称问题)。

和倍问题已知两个或多个人年龄关系,求各自年龄或年龄关系,这类应用题叫做和倍问题。大数=(和+差)÷2小数=(和-差)÷2总和÷(几倍+1)=较小的数总和-较小的数=较大的数较小的数×几倍=较大的数两个数的差÷(几倍-1)=较小的数较小的数×几倍=较大的数年龄问题具有年龄同增同减,年龄差不变的特性。年龄问题都可以转化为和差、和倍、差倍问题。简单的题目直接利用公式,复杂的题目变通后利用公式。例1:

爸爸今年38岁,妈妈今年36岁,当爸爸42岁时,妈妈_____岁。

解:

1、本题考查的年龄差不变(简单),不管过了多少年年龄差是不变的。

2、爸爸比妈妈大2岁,根据不管过了多少年年龄差是不变的,当爸爸42岁时,妈妈是40岁。例2:

姐姐今年15岁,妹妹今年12岁,当她们的年龄和是39岁时,那时妹妹_____岁。

解:

方法一:

1、利用年龄同增同减的思路。

2、姐妹俩今年的年龄之和是:15+12=27(岁),年龄之和到达39岁时需要的年限是:(39-27)÷2=6(年)。

3、那是妹妹的年龄是12+6=18(岁)。

方法二:

1、利用年龄差不变的思路。

2、两姐妹的年龄差为15-12=3(岁),再根据小数=(和-差)÷2的公式,可以求出妹妹的年龄为(39-3)÷2=18(岁)。

例3:

爸爸今年50岁,哥哥今年14岁,_____年前,爸爸的年龄是哥哥的5倍。

解:

1、不管过了多少年,年龄差是不变的,当爸爸的年龄是哥哥的5倍时,年龄差仍是50-14=36(岁)。

2、问什么时候爸爸的年龄是哥哥的5倍,实际上年龄差就是哥哥的5-1=4倍。

3、根据两个数的差÷(几倍-1)=较小的数,可以求出哥哥当时的年龄是(50-14)÷4=9(岁)。

4、再根据题意可求出14-9=5(年)前。

例4:

今年姐妹两人的年龄和是50岁,曾经有一年,姐姐的年龄与妹妹今年的年龄相同,且那时姐姐的年龄恰好是妹妹年龄的2倍。那么姐姐今年_____岁。

解:

1、当姐姐的年龄恰好是妹妹年龄的2倍时,我们设那时妹妹的年龄是1份,那么姐姐的年龄就是2份,那么姐姐与妹妹的年龄差就是1份。

2、因为那时姐姐的年龄与妹妹今年的年龄相同,所有妹妹今年的年龄也是2份。因为年龄差不变,所以今年姐姐的年龄应该是2+1=3份。

3、今年姐妹两人的年龄和是50岁,对应2+3=5份,求出1份是50÷5=10(岁),那么姐姐今年是10×3=30(岁)。

小学数学典型应用题七(相遇问题)相遇问题两个运动的物体同时由两地出发相向而行,在途中相遇。这类应用题叫做相遇问题。这类应用题叫做相遇问题。相遇时间=总路程÷(甲速+乙速)总路程=(甲速+乙速)×相遇时间

简单的题目可直接利用公式,复杂的题目变通后再利用公式,利用线段图分析可以让解题事半功倍。

例1:

欢欢和乐乐在一条马路的两端相向而行,欢欢每分钟行60米,乐乐每分钟行80米,他们同时出发5分钟后相遇。这条马路长()。

解:

根据公式总路程=(甲速+乙速)×相遇时间,可以求出这条马路长(60+80)×5=(米)。

例2:

甲乙两车分别以不变的速度从AB两地同时出发,相向而行。到达目的地后立即返回。已知第一次相遇地点距离A地50千米,第二次相遇地点距离B地60千米,AB两地相距_____千米。

解:

1、本题考查的是二次相遇问题,灵活的运用画线段图的方法来分析是解决这类问题的关键。

2、画线段图

3、从图中可以看出,第一次相遇时甲行了50千米。甲乙合行了一个全程的路程。

从第一次相遇后到第二次相遇,甲乙合行了两个全程的路程。由于甲乙速度不变,合行两个全程时,甲能行50×2=(千米)。

4、因此甲一共行了50+=(千米),从图中看甲所行路程刚好比AB两地相距路程还多出60千米。

所以AB两地相距-60=90(千米)。

例3:

欢欢和乐乐在相距80米的直跑道上来回跑步,乐乐的速度是每秒3米,欢欢的速度是每秒2米。如果他们同时分别从跑道两端出发,当他们跑了10分钟时,在这段时间里共相遇过_____次。

解:

1、根据题意,第一次相遇时,两人共走了一个全程,但是从第二次开始每相遇一次需要的时间都是第一次相遇时间的两倍。(线段图参考例2。)

2、根据“相遇时间=总路程÷速度和”得到,欢欢和乐乐首次相遇需要80÷(3+2)=16(秒)。

3、因为从第一次相遇结束到第二次相遇,欢欢和乐乐要走两个全程,所以从第二次开始每相遇一次需要的时间是16秒的2倍,也就是32秒,则经过第一次相遇后,剩下的时间是-16=(秒),还要相遇÷32=18.25(次),所以在这段时间里共相遇过18+1=19(次)。

小学数学典型应用题八(追及问题)追及问题

两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。这类应用题就叫做追及问题。

追及时间=追及路程÷(快速-慢速)

追及路程=(快速-慢速)×追及时间

简单的题目可直接利用公式,复杂的题目变通后再利用公式,利用线段图分析可以让解题事半功倍。

例1:

某警官发现前方米处有一匪徒,匪徒正以每秒2米的速度逃跑。警官赶紧以每秒3米的速度追,()秒后警官可以追上这个匪徒。

解:

1、从警官追开始到追上匪徒,这就是一个追及过程。根据公式:路程差÷速度差=追及时间。

2、路程差为米,警官每秒比匪徒多跑3-2=1(米),即速度差为1米/秒。所以追及的时间为÷1=(秒)。

例2:

甲乙二人同时从米的环形跑道的起跑线出发,甲每秒跑6米,乙每秒跑8米,同向出发。那么甲乙二人出发后()秒第一次相遇?

解:

1、由题可知,甲乙同时出发后,乙领先,甲落后,那么两人第一次相遇时,乙从后方追上甲,所以,乙的路程=甲的路程+一周跑道长度,即追及路程为米。

2、由追及时间=总路程÷速度差可得:经过÷(8-6)=(秒)两人第一次相遇。

例3:

小轿车、面包车和大客车的速度分别为60千米/时、48千米/时和42千米/时,小轿车和大客车从甲地、面包车从乙地同时相向出发,面包车遇到小轿车后30分钟又遇到大客车。那么甲、乙两地相距多远?

解:

1、根据题意,将较复杂的综合问题分解为若干个单一问题。首先是小轿车和面包车的相遇问题;其次是面包车和大客车的相遇问题;然后是小轿车与大客车的追及问题。最后通过大客车与面包车共行甲、乙两地的一个单程,由相遇问题可求出甲、乙两地距离。

2、画线段图,图上半部分是小轿车和面包车相遇时三车所走的路程。图下半部分是第一次相遇30分钟之后三车所走的路程。

3、由图可知,当面包车与大客车相遇时,大客车与小轿车的路程差为小轿车与大客车30分钟所走的路程。有小轿车与大客车的速度差,有距离,所以可以求出车辆行驶的时间。

(60+48)×0.5÷(60-42)=3(小时)。

4、由于大客车与面包车相遇,共行一个行程,所以AB两地路程为(42+48)×3=(千米)。

小学数学典型应用题九(植树问题)植树问题

按相等的距离植树,在距离、棵距、棵数这三个量之间,已知其中的两个量,要求第三个量,这类应用题叫做植树问题。

线形植树:

一端植树:

棵数=间隔数=距离÷棵距

两端植树:

棵数=间隔数+1=距离÷棵距+1

两端都不植树:

棵数=间隔数-1=距离÷棵距-1

环形植树:

棵数=间隔数=距离÷棵距

正多边形植树:

一周总棵数=每边棵数×边数-边数

每边棵树=一周总棵数÷边数+1

面积植树:

棵数=面积÷(棵距×行距)

先弄清楚植树问题的类型,然后可以利用公式。

例1:

植树节到了,少先队员要在相距72米的两幢楼房之间种8棵杨树。如果两头都不栽,平均每两棵树之间的距离应是多少米?

解:

1、本题考察的是植树问题中的两端都不栽的情况,解决此类问题的关键是要理解棵数比间隔数少1。

2、因为棵数比间隔数少1,所以共有8+1=9个间隔,每个间隔距离是72÷9=8米。

3、所以每两棵树之间的距离是8米。

例2:

佳一小学举行运动会,在操场周围插上彩旗。已知操场的周长是米,每隔5米插一根红旗,每两面红旗之间插一面*旗,那么一共插红旗多少面,一共插*旗多少面。

解:

1、本题考查的是植树问题中封闭图形间隔问题,本题中只要抓住棵数=间隔数,就能求出插了多少面红旗和*旗。

2、棵数=间隔数,一共插红旗÷5=(面),这一百面红旗中一共有个间隔,所以一共插*旗面。

例3:

多多从一楼爬楼梯到三楼需要6分钟,照这样计算,从三楼爬到十楼需要多少分钟?

解:

1、本题考查的是植树问题中锯木头、爬楼梯问题的情况。需要理解爬的楼层、锯的次数与层数、段数之间的关系,所在楼层=爬的层数+1;木头段数=锯的次数+1。

2、从一楼爬楼梯到三楼,需要爬2层,需要6分钟,所以每层需要6÷2=3(分钟)。因此从三楼爬到十楼,需要(10-3)×3=21(分钟)。

例4:

时钟敲3下要2秒钟,敲6下要多少秒?

解:

1、本题考查的是植树问题中敲钟声问题,与锯木头爬楼问题类似,本题中只要抓住敲的次数=间隔数+1。

2、时钟敲3下,中间有2个间隔,2个间隔需要2秒钟,那么1个间隔需要1秒钟。

时钟敲6下,中间有5个间隔,需要5秒。

小学数学典型应用题十(行船问题)追及问题

行船问题也就是与航行有关的问题。解答这类问题要弄清船速与水速,船速是船只本身航行的速度,也就是船只在静水中航行的速度;水速是水流的速度,船只顺水航行的速度是船速与水速之和;船只逆水航行的速度是船速与水速之差。

(顺水速度+逆水速度)÷2=船速(顺水速度-逆水速度)÷2=水速顺水速=船速×2-逆水速=逆水速+水速×2逆水速=船速×2-顺水速=顺水速-水速×2

简单的题目可直接利用公式,复杂的题目变通后再利用公式,利用线段图分析可以让解题事半功倍。

例1:

某船在同一条河中顺水船速是每小时20千米,逆水船速是每小时10千米,这条河的水流速度是每小时_____千米?

解:

顺水船速=船速+水流速度,逆水船速=船速-水流速度,可以看出,顺水船速比逆水船速多2个水流速度,

因此,水流速度=(20-10)÷2=5(千米/时)。

例2:

某条大河水流速度是每小时5千米,一艘静水船速是每小时20千米的货轮逆水航行5小时能到达目的地,这艘货轮原路返回到出发地需要多少小时?

解:

1、逆水速度=静水船速-水流速度,所以货轮逆水速度是20-5=15(千米/时),行驶5小时共行了15×5=75(千米)。

2、原路返回时是顺水航行,顺水速度是静水船速+水速,即20+5=25(千米/时),所以返回用时75÷25=3(小时)。

例3:

小船在两个码头间航行,顺水需4小时,逆水需5小时,若一只木筏顺水漂过这段距离需_____小时?

解:

1、我们可以假设一个路程。假设两个码头之间的距离是千米,顺水需4小时,则顺水的速度是每小时÷4=50(千米),逆水需5小时,则逆水的速度是每小时÷5=40(千米)。

2、根据“水速=(顺水行驶速度-逆水行驶速度)÷2”得到,水流速度是每小时(50-40)÷2=5(千米)。

3、一只木筏顺水漂过的速度就是水流速度,所以木筏顺水漂过这段距离需要÷5=40(小时)。

小学数学典型应用题十一(列车问题)列车问题与列车行驶有关的一些问题,解答时要注意列车车身的长度。火车过桥:过桥时间=(车长+桥长)÷车速火车追及:追及时间=(甲车长+乙车长+距离)÷(甲车速-乙车速)火车相遇:相遇时间=(甲车长+乙车长+距离)÷(甲车速+乙车速)

简单的题目可直接利用公式,复杂的题目变通后再利用公式,利用线段图分析可以让解题事半功倍。

例1:

一列火车全长米,全车通过米的隧道需要67秒,火车的速度是多少米/秒?

解:

1、本题考查的是火车过桥的问题,解决本题的关键是知道火车完全经过隧道所走的路程是一个车身长+隧道长,进而求出车速。

2、因此火车的速度为:(+)÷67=11(米/秒)。

例2:

在两行轨道上有两列火车相对开来,一列火车长米,每秒行18米,另一列火车每秒行19米,两列火车从相遇到完全错开用了12秒钟,那么另一列火车长多少米?

解:

两列火车从相遇到完全错开,所行路程之和刚好是它们的车身长度之和。根据“路程和=速度和×时间”可得,另一列火车长=(18+19)×12-=(米)。

例3:

一列火车通过一座长90米的桥需要24秒,如果火车的速度加快1倍,它通过长为米的隧道只用了18秒。原来火车每秒行多少米?

解:

1、根据“火车的速度加快1倍,它通过长为米的隧道只用了18秒”可知,如果火车用原来的速度通过米的隧道,则要用18×2=36(秒)。

2、隧道比大桥长-90=(米),火车要多用36-24=12(秒)行驶这一段路程,根据速度=路程÷时间,可以求出原来火车每秒行÷12=11(米)。

小学数学典型应用题十二(时钟问题)时钟问题就是研究钟面上时针与分针关系的问题,如两针重合、两针垂直、两针成一线、两针夹角为60度等,这类问题可转化为行程问题中的追及问题。分针的速度是时针的12倍,二者的速度差为5.5度/分。通常按追及问题来对待,也可以按差倍问题来计算。将两针重合,两针垂直,两针成一线,两针夹角60°等为“追及问题”后可以直接利用公式。例1:

钟面上从时针指向8开始,再经过多少分钟,时针正好与分针第一次重合?(精确到1分)

解:

1、此类题型可以把钟面看成一个环形跑道,那么本题就相当于行程问题中的追及问题,即分针与时针之间的路程差是°。

2、分针每分钟比时针多转6°-0.5°=5.5°,所以需要÷5.5≈44(分钟)。也就是从8时开始,再经过44分钟,时针正好与分针第一次重合。

例2:

从早晨6点到傍晚6点,钟面上时针和分针一共重合了多少次?

解:

我们可以把钟面看成一个环形跑道,这样分针和时针的转动就可以转化成追及问题,从早晨6点到傍晚6点,一共经过了12小时,12个小时分针要跑12圈,时针只能跑1圈,分针比时针多跑12-1=11(圈),而分针每比时针多跑1圈,就会追上时针一次,也就是和时针重合1次,所以12小时内两针一共重合了11次。例3:

一部记录中国*队时代变迁的纪录片时长有两个多小时,小明发现,纪录片播放结束时,手表上时针、分针的位置正好与开始时时针、分针的位置交换了一下,这部纪录片时长多少分钟?(精确到1分)

解:

1、解决本题的关键是认识到时针与分针合走的路程是°,进而转化成相遇问题来解决。

2、两个多小时,分针与时针位置正好交换,所以分针与时针所走的路程和正好是三圈,也就是分针和时针合走了°×3=°,而分针和时针每分钟的合走6°+0.5°=6.5°,所以合走°需要÷6.5≈(分钟),即这部纪录片时长分钟。小学数学典型应用题十三(盈亏问题)盈亏问题根据一定的人数,分配一定的物品,在两次分配中,一次有余(盈),一次不足(亏),或两次都有余,或两次都不足,求人数或物品数,这类应用题叫做盈亏问题。一般地说,在两次分配中,如果一次盈,一次亏,则有:参加分配总量=(盈+亏)÷分配差如果两次都盈或都亏,则有:参加分配总量=(大盈-小盈)÷分配差参加分配总量=(大亏-小亏)÷分配差大多数情况可以直接利用数量关系的公式。例1:

小明从家到学校,如果每分钟走50米,就要迟到3分钟;如果每分钟走70米,则可提前5分钟到校,小明家到学校的路程是多少米?

解:

1、分析题意,类比“盈亏问题”,我们可以把“迟到3分钟”转化为比计划路程少行50×3=(米),把“提前5分钟”转化为比计划路程多行70×5=(米),这时题目被转化成了“一盈一亏”问题。

2、根据公式,求出原计划到校的时间:(+)÷(70-50)=25(分钟)。

3、所以小明家到学校的路程:50×(25+3)=1(米),或者70×(25-5)=1(米)。例2:

若干人擦玻璃窗,其中2人各擦4块,其余的人各擦5块,则余12块;若每人擦6块,正好擦完。擦玻璃窗的共有多少人,玻璃共有多少块?

解:

1、由题意可知,本题属于分配不均型的盈亏问题,需要将题目条件转化成一般盈亏问题。“其中2人各擦4块,其余的人各擦5块,则余12块”可以转化为“每人擦5块,则余10块”。

2、这样就转化为了双盈问题,擦玻璃的有:(10-0)÷(6-5)=10人,玻璃共有10×5+10=60块。例3:

动物园饲养员把一堆桃子分给一群猴子。如果每只猴子分10个桃子,则有两只猴子没有分到;如果有两只猴子分8个桃子,其余猴子分9个,则还差3个桃子。一共有多少只猴子?

解:

1、分析题意,题中有两种分配方式,联系“盈亏问题”,我们可以把“两只猴子没有分到”理解为桃子的数量少2×10=20(个),再把“有两只猴子分8个桃子,其余猴子分9个,则还差3个桃子”理解为每只猴子分9个,则还少(9-8)×2+3=5(个)。

2、这时把题目看成“双亏问题”,求出猴子的数量:(20-5)÷(9-8)=15(只)。

小学数学典型应用题十四(工程问题)工程问题工程问题主要研究工作量、工作效率和工作时间三者之间的关系。这类问题在已知条件中,常常不给出工作量的具体数量,只提出“一项工程”、“一块土地”、“一条水渠”、“一件工作”等,在解题时,常常用单位“1”表示工作总量。工作量=工作效率×工作时间工作时间=工作量÷工作效率工作时间=工作总量÷(甲工作效率+乙工作效率)解答工程问题的关键是把工作总量看作单位“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式。例1:

一项工程,甲队独做要12天完成,乙队独做要15天完成,两队合做4天可以完成这项工程的()。

解:

1、本题考察的是两个人的工程问题,解决本题的关键是求出甲、乙两队的工作效率之和。进而用工作效率×工作时间=工作量。

2、甲队的工作效率为:1÷12=,乙队的工作效率为:1÷15=,两队合做4天,可以完成这项工程的(+)×4=。

例2:

一项工程,甲、乙两队合作30天完成。如果甲队单独做24天后,乙队再加入合做,两队合做12天后,甲队因事离去,由乙队继续做了15天才完成。这项工程如果由甲队单独做,需要多少天完成?

解:

1、我们可以将“甲队单独做24天后,乙队再加入合做,两队合做12天后,甲队因事离去,由乙队继续做了15天才完成”转化为“甲、乙两队合做27天,甲再单独做9天”,由此可以求出甲9天的工作量为:,甲每天的工作效率为:,这项工程如果由甲队单独做,需要。

例3:

有一项工程,甲单独做需要6小时,乙单独做需要8小时,丙单独做需要10小时,上午8时三人同时开始,中间甲有事离开,如果到中午12点工程才完工,则甲上午离开的时间是几时几分?

解:

1、根据题意,知道了甲乙丙的工作时间可求出相应的工作效率。甲的工作量是全部工作量减去乙丙的工作量,所以甲的工作时间也可以求出来,即甲上午离开的时间也可以求出来。

2、甲的工作量=1-(+)×4=;

甲的工作效率为:1÷6=

所以甲的工作时间为:÷=(小时)

所以甲离开的时间是8时36分。

小学数学典型应用题十五(百分数问题)百分数问题百分数是表示一个数是另一个数的百分之几的数。百分数是一种特殊的分数。分数常常可以通分、约分,而百分数则无需;分数既可以表示“率”,也可以表示“量”,而百分数只能表示“率”;分数的分子、分母必须是自然数,而百分数的分子可以是小数;百分数有一个专门的记号“%”。在实际中和常用到“百分点”这个概念,一个百分点就是1%,两个百分点就是2%。掌握“百分数”、“标准量”“比较量”三者之间的数量关系:百分数=比较量÷标准量标准量=比较量÷百分数一般有三种基本类型:(1)求一个数是另一个数的百分之几;(2)已知一个数,求它的百分之几是多少;(3)已知一个数的百分之几是多少,求这个数。例1:

在植树节里,某校六年级学生在校园内种树8棵,占全校植树数的20%,则该校在植树节里共植树多少棵?

解:

已知六年级学生的种树棵数以及所种棵数占全校植树数的比值,直接用除法运算即可。所以:8÷20%=40(棵)

例2:

商店新上架了一批连衣裙,第一天卖出总数的25%,第二天卖出45件,第三天卖出的是前两天卖出的总和的三分一,最后剩下20件,则商店原先进了多少件连衣裙?

解:

1、把这批连衣裙的总数看作单位“1”,已知第三天卖出的是前两天卖出的总和的三分之一,也就是第三天卖出了25%的和45的,由此可以求出与(45+45×+20)对应的分率。

2、根据已知一个数的几分之几或百分之几是多少,求这个数,用除法解答。

(45+45×+20)÷(1-25%-25%×)=(件)

例3:

一堆围棋子黑白两种颜色,拿走15枚白棋子后,白子占总数的40%;再拿走49枚黑棋子后,白子占总数的75%,则原来这堆棋子一共有多少枚?

解:

1、本题考察的是百分数应用题的相关知识,解决本题的关键是当一种棋子变化时,抓住另一种棋子的数量不变,统一不变量的份数,进而解决问题。

2、由条件可知,当拿走49枚黑子时,此时白子的数量没有变化,那么拿走49枚黑子前,黑子与白子的数量比为(1-40%):40%=3:2=9:6,拿走49枚黑子后,黑子与白子的数量比为(1-75%):75%=1:3=2:6,所以拿走的49枚黑子相当于9-2=7(份),故每一份是49÷7=7(枚)棋子

3、拿走49枚棋子之前,黑子有7×9=63(枚),白子有7×6=42(枚)。

4、再往前推,由“拿走15枚白棋子”可知,黑子的数量没有变化,所以原来黑子有63枚,白子有42+15=57(枚),那么原来这堆棋子一共有63+57=(枚)棋子。

知识补充

百分数又叫百分率,百分率在工农业生产中应用很广泛,常见的百分率有:

增长率=增长数÷原来基数×%

合格率=合格产品数÷产品总数×%

出勤率=实际出勤人数÷应出勤人数×%

出勤率=实际出勤天数÷应出勤天数×%

缺席率=缺席人数÷实有总人数×%

发芽率=发芽种子数÷试验种子总数×%

成活率=成活棵数÷种植总棵数×%

出粉率=面粉重量÷小麦重量×%

出油率=油的重量÷油料重量×%

废品率=废品数量÷全部产品数量×%

命中率=命中次数÷总次数×%

烘干率=烘干后重量÷烘前重量×%

及格率=及格人数÷参加考试人数×%

小学数学典型应用题十六(方阵问题)方阵问题将若干人或物依一定条件排成正方形(简称方阵),根据已知条件求总人数或总物数,这类问题就叫做方阵问题。(1)方阵每边人数与四周人数的关系:四周人数=(每边人数-1)×4每边人数=四周人数÷4+1(2)方阵总人数的求法:

实心方阵:总人数=每边人数×每边人数

空心方阵:总人数=外每边的人数平方-内每边的人数平方内每边人数=外每边人数-层数×2(3)若将空心方阵分成四个相等的矩形计算,则:总人数=(每边人数-层数)×层数×4方阵问题有实心与空心两种。实心方阵的求法是以每边的数自乘;空心方阵的变化较多,其解答方法应根据具体情况确定。例1:

佳一学校参加运动会团体操比赛的运动员排成了一个正方形队列。如果要使这个正方形队列减少一行和一列,则要减少23人。那么参加团体操表演的运动员一共有多少人?

解:

1、要知道参加表演的运动员共有多少人,只需要找到最外层每边有多少人即可。

2、一个正方形队列,减去一行和一列,就是去掉了两条边上的人数,其中顶点上的人数计算了两次,所以减少的人数=每边的人数×2-1。所以开始每边有(23+1)÷2=12(人),参加表演的有12×12=(人)。

例2:

欢欢用围棋子围成一个三层空心方阵,最外一层每边有围棋子16枚,欢欢摆这个方阵共用了多少枚围棋子?

解法1:

1、本题考查的空心方阵,根据四周的枚数和每边上的枚数之间的关系,算出每一层的棋子数。

2、方阵每向里一层,每边的枚数就减少2枚。知道最外一层每边放16枚,就可求出第二层及第三层每边枚数,知道各层每边的枚数,就可以求出各层的总数。最外一层的棋子的枚数:(16-1)×4=60(枚),第二层棋子的枚数:(16-2-1)×4=52(枚),第三层棋子的枚数:(16-2-2-1)×4=11×4=44(枚),摆这个方阵共用了60+52+44=(枚)棋子。

解法2:若将空心方阵分成四个相等的矩形计算,则:总人数=(每边人数-层数)×层数×4。则:(16-3)×3×4=(枚)例3:

一个实心方阵由81人组成,这个方阵的最外层有多少人?

解:

方阵的行数和列数相同,9×9=81,所以这是一个9行9列的方阵。最外层人数与一边人数的关系:一边人数×4-4=一层人数。所以最外层的人数是9×4-4=32(人)。

例4:

明明在一个用棋子排成的实心方阵的下面和右面各多排一排棋子,一共用了23个棋子,这样排成了一个新方阵,他又把这个新方阵改排成一个4层的空心方阵,这个方阵最外层每边有多少个棋子?

解:

1、根据题意,排成的这个新方阵的每边棋子数是(23+1)÷2=12(个),那么这个实心方阵的棋子总数是12×12=(个)。

2、根据空心方阵中,每相邻的两层的棋子数相差8的关系,我们可以找出等量关系,列方程解决。

设最外层有x个棋子,则从外到内每层的棋子数分别是(x-8)个、(x-16)个、(x-24)个。

则:x+x-8+x-16+x-24=,x=48

所以这个方阵最外层每边有48÷4+1=13(个)棋子

预览时标签不可点收录于话题#个上一篇下一篇
1
查看完整版本: 小学数学典型应用题五差倍问题