编程语言应用

首页 » 常识 » 常识 » 小学典型应用题06追及问题例题视频讲
TUhjnbcbe - 2021/7/5 0:54:00

北师大版小学数学电子课本丨同步课堂教辅资料丨习题试卷往期回顾:01归一问题02归总问题03年龄问题04:植树问题05相遇问题

追及问题

两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。这类应用题就叫做追及问题。追及时间=追及路程÷(快速-慢速)追及路程=(快速-慢速)×追及时间简单的题目可直接利用公式,复杂的题目变通后再利用公式,利用线段图分析可以让解题事半功倍。

例题1:

某警官发现前方米处有一匪徒,匪徒正以每秒2米的速度逃跑。警官赶紧以每秒3米的速度追,()秒后警官可以追上这个匪徒。解:1、从警官追开始到追上匪徒,这就是一个追及过程。根据公式:路程差÷速度差=追及时间。2、路程差为米,警官每秒比匪徒多跑3-2=1(米),即速度差为1米/秒。所以追及的时间为÷1=(秒)。

视频解析

例题2:

甲乙二人同时从米的环形跑道的起跑线出发,甲每秒跑6米,乙每秒跑8米,同向出发。那么甲乙二人出发后()秒第一次相遇?解:1、由题可知,甲乙同时出发后,乙领先,甲落后,那么两人第一次相遇时,乙从后方追上甲,所以,乙的路程=甲的路程+一周跑道长度,即追及路程为米。2、由追及时间=总路程÷速度差可得:经过÷(8-6)=(秒)两人第一次相遇。

视频解析

例题3:

小轿车、面包车和大客车的速度分别为60千米/时、48千米/时和42千米/时,小轿车和大客车从甲地、面包车从乙地同时相向出发,面包车遇到小轿车后30分钟又遇到大客车。那么甲、乙两地相距多远?解:1、根据题意,将较复杂的综合问题分解为若干个单一问题。首先是小轿车和面包车的相遇问题;其次是面包车和大客车的相遇问题;然后是小轿车与大客车的追及问题。最后通过小轿车与面包车共行甲、乙两地的一个单程,由相遇问题可求出甲、乙两地距离。2、画线段图,图上半部分是小轿车和面包车相遇时三车所走的路程。图下半部分是第一次相遇30分钟之后三车所走的路程。3、由图可知,当面包车与小轿车相遇时,大客车与小轿车的路程差为小轿车与大客车30分钟所走的路程。有小轿车与大客车的速度差,有距离,所以可以求出车辆行驶的时间。(42+48)×0.5÷(60-42)=2.5(小时)。4、由于小轿车与面包车相遇,共行一个行程,所以AB两地路程为(60+48)×2.5=(千米)。

视频解析

声明:本

1
查看完整版本: 小学典型应用题06追及问题例题视频讲