请收藏好以下图片预课资料
(点击上图可观看视频及下载课件教案)小学数学典型应用题第1讲小学数学典型应用题第2讲小学数学典型应用题第3讲小学数学典型应用题第4讲小学数学典型应用题第5讲小学数学典型应用题第6讲追及问题两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。这类应用题就叫做追及问题。
追及时间=追及路程÷(快速-慢速)
追及路程=(快速-慢速)×追及时间
简单的题目可直接利用公式,复杂的题目变通后再利用公式,利用线段图分析可以让解题事半功倍。
例1:某警官发现前方米处有一匪徒,匪徒正以每秒2米的速度逃跑。警官赶紧以每秒3米的速度追,()秒后警官可以追上这个匪徒。
解:
1、从警官追开始到追上匪徒,这就是一个追及过程。根据公式:路程差÷速度差=追及时间。
2、路程差为米,警官每秒比匪徒多跑3-2=1(米),即速度差为1米/秒。所以追及的时间为÷1=(秒)。
例2:甲乙二人同时从米的环形跑道的起跑线出发,甲每秒跑6米,乙每秒跑8米,同向出发。那么甲乙二人出发后()秒第一次相遇?
解:
1、由题可知,甲乙同时出发后,乙领先,甲落后,那么两人第一次相遇时,乙从后方追上甲,所以,乙的路程=甲的路程+一周跑道长度,即追及路程为米。
2、由追及时间=总路程÷速度差可得:经过÷(8-6)=(秒)两人第一次相遇。
例3:小轿车、面包车和大客车的速度分别为60千米/时、48千米/时和42千米/时,小轿车和大客车从甲地、面包车从乙地同时相向出发,面包车遇到小轿车后30分钟又遇到大客车。那么甲、乙两地相距多远?
解:
1、根据题意,将较复杂的综合问题分解为若干个单一问题。首先是小轿车和面包车的相遇问题;其次是面包车和大客车的相遇问题;然后是小轿车与大客车的追及问题。最后通过大客车与面包车共行甲、乙两地的一个单程,由相遇问题可求出甲、乙两地距离。
2、画线段图,图上半部分是小轿车和面包车相遇时三车所走的路程。图下半部分是第一次相遇30分钟之后三车所走的路程。
3、由图可知,当面包车与大客车相遇时,大客车与小轿车的路程差为小轿车与大客车30分钟所走的路程。有小轿车与大客车的速度差,有距离,所以可以求出车辆行驶的时间。
(60+48)×0.5÷(60-42)=3(小时)。
4、由于大客车与面包车相遇,共行一个行程,所以AB两地路程为(42+48)×3=(千米)。
往期资料推荐
1-9年级(上下册)各科目电子课本
1~9年级各科目全册PPT课件教案
1~6年级语文(上下)全册图文视频
1~6年级数学(上下册)图文视频(各版本)
1~6年级英语(上下册)图文微课(各版本)
1~6年级科学(上下)全册微课+课件教案
1~6年级美术(上下)全册微课+课件教案
1~6年级音乐(上下)全册微课+课件教案
1~6年级道德与法制(上下册)同步微课+课件
1-9年级英语48个国际音标发音+口语教程
一年级汉语拼音声母韵母动画微课
班主任工作资源(世班会课件等资料)