一、前言
高中数学由于导数的引入,使得研究函数单调性和最值的方法更加丰富。三角函数也是函数,当然也可以借助导数来研究三角函数问题。对于三角函数的单调性、奇偶性、对称性、最值问题、含参问题或者相关综合性问题,借助导数进行研究能更充分地考查数学思想方法,运算求解能力,综合应变与解题调控能力,也能很好地彰显考生解题方法的灵活性,多样性与独创性,从而备受命题者的青睐。不少高考试题和高三综合试题均在三角函数和导数交汇处进行命题,以下举例说明。
二、命题点分析
命题点1:借助导数研究三角函数的单调性,奇偶性,对称性问题角度一:单调性问题例题1:年全国II卷第10题
例题2
角度二:奇偶性问题可导奇函数的导函数为偶函数,可导偶函数的导函数为奇函数.
例题3
例题4
角度三:对称性问题例题5
例题6
二、命题点分析
命题点2:借助导数求三角函数的最值试题借助导数考查三角函数的单调性,进而求出最值.
例题7:年全国I卷第16题
例题8:年全国卷选择第12题
例题9:年江苏卷第17题
简析:本题以现实生活中的农田地块设计为背景,考查三角函数在现实生活中的应用,是数学建模思想的一个重要体现.对于第二步求总产值的最大值问题,必须先将总产值表示成关于Φ的一元函数模型,然后借助函数求最值的方法求出最大值,实际上是求f(Φ)=sinΦcosΦ+cosΦ的最大值,借助导数,十分简捷,计算量小,大道至简.
二、命题点分析
命题点3:借助导数求三角函数的极值点试题结合三角函数的图象与性质,紧扣极值点的概念进行求解.要求对极值点的概念有深刻的认识.
例题10
例题11
例题12
二、命题点分析
命题点4:借助导数求三角函数的零点问题借助导数考查三角函数的零点问题,经常与零点存在性定理一起使用,证明在某个区间内存在唯一零点.
例题13
例题14:年福建卷第20题
二、命题点分析
命题点5:借助导数求三角函数的零点问题以三角函数和直线方程为载体,借助导数研究问题,综合性较强,凸显多思少算.
例题15
例题16
例题17
例题18
三、练习巩固
练习1
练习2
练习3:年大纲卷第16题
练习4:年高考新课标理科
练习5
练习6
练习7
练习8
不难发现,以三角函数为载体,融合函数、导数、不等式等重要知识点于一体,是此类试题的一大特色,充分体现数学知识本质联系,突出考查函数的性质、导数、不等式等知识及数学思想方法的灵活应用。这类题目能够较好地考查学生运算求解能力,推理论证能力,数学核心素养,具有很好的启智功能,导向功能。因此,在复习备考中应该引起我们足够的重视。预览时标签不可点收录于话题#个上一篇下一篇