「来源:|机械工程师ID:MechanicalEngineers」
专注于机械行业、专业、职业信息分享
服务于制造业百万工程师
推荐阅读
机械图纸技术要求大全,太全了,记得收藏!我所经历的质量事故和解决办法,你会怎么做?机械工程师求职简历模板分享金属挤压和拉拔技术与原理,还是专业英语!
说到机器人,一般人想到的画面可能是这样的:
或者是这样的:
也就是说,很多人印象中的机器人就是“长得像人的机器”。
但实际上,更多的机器人是这样的:
是的,虽然长得不像人,但它们的确是机器人——工业机器人。
机器人发展到现在越来越受到人们的欢迎和重视,现在很多传统行业都在生产作业中引入了工业机器人,随着机器人的改进和优化,工业机器人在传统加工制造行业地位的重要性也越来越明显。
那么,什么是工业机器人?内部结构是什么样的?龙头企业有哪些?......相信看完这篇文章,您就会对工业机器人技术有一个系统而全面的了解!
工业机器人科普
工业机器人的分类
移动机器人
移动机器人(AGV)是工业机器人的一种类型,它可广泛应用于机械、电子、纺织、卷烟、医疗、食品、造纸等行业的柔性搬运、传输等功能,也用于自动化立体仓库、柔性加工系统、柔性装配系统(以AGV作为活动装配平台);同时可在车站、机场、邮局的物品分捡中作为运输工具。
点焊机器人
焊接机器人具有性能稳定、工作空间大、运动速度快和负荷能力强等特点,焊接质量明显优于人工焊接,大大提高了点焊作业的生产率。
弧焊机器人
弧焊机器人主要应用于各类汽车零部件的焊接生产。在该领域,国际大型工业机器人生产企业主要以向成套装备供应商提供单元产品为主。
激光加工机器人
激光加工机器人是将机器人技术应用于激光加工中,通过高精度工业机器人实现更加柔性的激光加工作业。系统可以进行在线操作,也可通过离线方式进行编程。
机器人通过对加工工件的自动检测,产生加工件的模型,继而生成加工曲线,也可以利用CAD数据直接加工。可用于工件的激光表面处理、打孔、焊接和模具修复等。
真空机器人
真空机器人是一种在真空环境下工作的机器人,主要应用于半导体工业中,实现晶圆在真空腔室内的传输。真空机械手难进口、受限制、用量大、通用性强,其成为制约了半导体装备整机的研发进度和整机产品竞争力的关键部件。
洁净机器人
洁净机器人是一种在洁净环境中使用的工业机器人。随着生产技术水平不断提高,其对生产环境的要求也日益苛刻,很多现代工业产品生产都要求在洁净环境进行,洁净机器人是洁净环境下生产需要的关键设备。
工业机器人TOP50(排名不分先后)
工业机器人的内部结构
一、机器人驱动装置
概念:要使机器人运行起来,需给各个关节即每个运动自由度安置传动装置作用:提供机器人各部位、各关节动作的原动力。
驱动系统:可以是液压传动、气动传动、电动传动,或者把它们结合起来应用的综合系统;可以是直接驱动或者是通过同步带、链条、轮系、谐波齿轮等机械传动机构进行间接驱动。
1、电动驱动装置
电动驱动装置的能源简单,速度变化范围大,效率高,速度和位置精度都很高。但它们多与减速装置相联,直接驱动比较困难。
电动驱动装置又可分为直流(DC)、交流(AC)伺服电机驱动和步进电机驱动。直流伺服电机电刷易磨损,且易形成火花。无刷直流电机也得到了越来越广泛的应用。步进电机驱动多为开环控制,控制简单但功率不大,多用于低精度小功率机器人系统。
电动上电运行前要作如下检查:
1)电源电压是否合适(过压很可能造成驱动模块的损坏);对于直流输入的+/-极性一定不能接错,驱动控制器上的电机型号或电流设定值是否合适(开始时不要太大);
2)控制信号线接牢靠,工业现场最好要考虑屏蔽问题(如采用双绞线);
3)不要开始时就把需要接的线全接上,只连成最基本的系统,运行良好后,再逐步连接。
4)一定要搞清楚接地方法,还是采用浮空不接。
5)开始运行的半小时内要密切观察电机的状态,如运动是否正常,声音和温升情况,发现问题立即停机调整。
2、液压驱动
通过高精度的缸体和活塞来完成,通过缸体和活塞杆的相对运动实现直线运动。
优点:功率大,可省去减速装置直接与被驱动的杆件相连,结构紧凑,刚度好,响应快,伺服驱动具有较高的精度。
缺点:需要增设液压源,易产生液体泄漏,不适合高、低温场合,故液压驱动目前多用于特大功率的机器人系统。
选择适合的液压油。防止固体杂质混入液压系统,防止空气和水入侵液压系统。机械作业要柔和平顺机械作业应避免粗暴,否则必然产生冲击负荷,使机械故障频发,大大缩短使用寿命。要注意气蚀和溢流噪声。作业中要时刻注意液压泵和溢流阀的声音,如果液压泵出现“气蚀”噪声,经排气后不能消除,应查明原因排除故障后才能使用。保持适宜的油温。液压系统的工作温度一般控制在30~80℃之间为宜。
3、气压驱动
气压驱动的结构简单,清洁,动作灵敏,具有缓冲作用。.但与液压驱动装置相比,功率较小,刚度差,噪音大,速度不易控制,所以多用于精度不高的点位控制机器人。
(1)具有速度快、系统结构简单,维修方便、价格低等特点。适于在中、小负荷的机器人中采用。但因难于实现伺服控制,多用于程序控制的机械人中,如在上、下料和冲压机器人中应用较多。
(2)在多数情况下是用于实现两位式的或有限点位控制的中、小机器人中的。
(3)控制装置目前多数选用可编程控制器(PLC控制器)。在易燃、易爆场合下可采用气动逻辑元件组成控制装置。
二、直线传动机构
传动装置是连接动力源和运动连杆的关键部分,根据关节形式,常用的传动机构形式有直线传动和旋转传动机构。
直线传动方式可用于直角坐标机器人的X、Y、Z向驱动,圆柱坐标结构的径向驱动和垂直升降驱动,以及球坐标结构的径向伸缩驱动。
直线运动可以通过齿轮齿条、丝杠螺母等传动元件将旋转运动转换成直线运动,也可以有直线驱动电机驱动,也可以直接由气缸或液压缸的活塞产生。
1、齿轮齿条装置
通常齿条是固定的。齿轮的旋转运动转换成托板的直线运动。
优点:结构简单。
缺点:回差较大。
2、滚珠丝杠
在丝杠和螺母的螺旋槽内嵌入滚珠,并通过螺母中的导向槽使滚珠能连续循环。
优点:摩擦力小,传动效率高,无爬行,精度高
缺点:制造成本高,结构复杂。
自锁问题:理论上滚珠丝杠副也可以自锁,但是实际应用上没有使用这个自锁的,原因主要是:可靠性很差,或加工成本很高;因为直径与导程比非常大,一般都是再加一套蜗轮蜗杆之类的自锁装置。
三、旋转传动机构
采用旋转传动机构的目的是将电机的驱动源输出的较高转速转换成较低转速,并获得较大的力矩。机器人中应用较多的旋转传动机构有齿轮链、同步皮带和谐波齿轮。
1、齿轮链
(1)转速关系
(2)力矩关系
2、同步皮带
同步带是具有许多型齿的皮带,它与同样具有型齿的同步皮带轮相啮合。工作时相当于柔软的齿轮。
优点:无滑动,柔性好,价格便宜,重复定位精度高。
缺点:具有一定的弹性变形。
3、谐波齿轮
谐波齿轮由刚性齿轮、谐波发生器和柔性齿轮三个主要零件组成,一般刚性齿轮固定,谐波发生器驱动柔性齿轮旋转。
主要特点:
(1)、传动比大,单级为50—。
(2)、传动平稳,承载能力高。
(3)、传动效率高,可达70%—90%。
(4)、传动精度高,比普通齿轮传动高3—4倍。
(5)、回差小,可小于3’。
(6)、不能获得中间输出,柔轮刚度较低。
谐波传动装置在机器人技术比较先进的国家已得到了广泛的应用。仅就日本来说,机器人驱动装置的60%都采用了谐波传动。
美国送到月球上的机器人,其各个关节部位都采用谐波传动装置,其中一只上臂就用了30个谐波传动机构。
前苏联送入月球的移动式机器人“登月者”,其成对安装的8个轮子均是用密闭谐波传动机构单独驱动的。德国大众汽车公司研制的ROHREN、GEROTR30型机器人和法国雷诺公司研制的VERTICAL80型机器人等都采用了谐波传动机构。
四、机器人传感系统
1、感受系统由内部传感器模块和外部传感器模块组成,用以获取内部和外部环境状态中有意义的信息。
2、智能传感器的使用提高了机器人的机动性、适应性和智能化的水准。
3、智能传感器的使用提高了机器人的机动性、适应性和智能化的水准。
4、对于一些特殊的信息,传感器比人类的感受系统更有效。
五、机器人位置检测
旋转光学编码器是最常用的位置反馈装置。光电探测器把光脉冲转化成二进制波形。轴的转角通过计算脉冲数得到,转动方向由两个方波信号的相对相位决定。
感应同步器输出两个模拟信号——轴转角的正弦信号和余弦信号。轴的转角由这两个信号的相对幅值计算得到。感应同步器一般比编码器可靠,但它的分辨率较低。
电位计是最直接的位置检测形式。它连接在电桥中,能够产生与轴转角成正比的电压信号。但是,由于分辨率低、线性不好以及对噪声敏感。
转速计能够输出与轴的转速成正比的模拟信号。如果没有这样的速度传感器,可以通过对检测到的位置相对于时间的差分得到速度反馈信号。
六、机器人力检测
力传感器通常安装在操作臂下述三个位置:
1、安装在关节驱动器上。可测量驱动器/减速器自身的力矩或者力的输出。但不能很好地检测末端执行器与环境之间的接触力。
2、安装在末端执行器与操作臂的终端关节之间,可称腕力传感器。通常,可以测量施加于末端执行器上的三个到六个力/力矩分量。
3、安装在末端执行器的“指尖”上。通常,这些带有力觉得手指内置了应变计,可以测量作用在指尖上的一个到四个分力。
七、机器人-环境交互系统
1、机器人-环境交互系统是实现工业机器人与外部环境中的设备相互联系和协调的系统。
2、工业机器人与外部设备集成为一个功能单元,如加工制造单元、焊接单元、装配单元等。也可以是多台机器人、多台机床或设备、多个零件存储装置等集成。
3、也可以是多台机器人、多台机床或设备、多个零件存储装置等集成为一个去执行复杂任务的功能单元。
八、人机交互系统
人机交互系统是使操作人员参与机器人控制并与机器人进行联系的装置。该系统归纳起来分为两大类:指令给定装置和信息显示装置。
机器人控制系统相关知识
什么是机器人控制系统
如果仅仅有感官和肌肉,人的四肢还是不能动作。一方面是因为来自感官的信号没有器官去接收和处理,另一方面也是因为没有器官发出神经信号,驱使肌肉发生收缩或舒张。同样,如果机器人只有传感器和驱动器,机械臂也不能正常工作。原因是传感器输出的信号没有起作用,驱动电动机也得不到驱动电压和电流,所以机器人需要有一个控制器,用硬件坨和软件组成一个的控制系统。
机器人控制系统的功能是接收来自传感器的检测信号,根据操作任务的要求,驱动机械臂中的各台电动机就像我们人的活动需要依赖自身的感官一样,机器人的运动控制离不开传感器。机器人需要用传感器来检测各种状态。机器人的内部传感器信号被用来反映机械臂关节的实际运动状态,机器人的外部传感器信号被用来检测工作环境的变化。
所以机器人的神经与大脑组合起来才能成一个完整的机器人控制系统。
机器人的运动控制系统包含哪些方面?
执行机构----伺服电机或步进电机;
驱动机构----伺服或者步进驱动器;
控制机构----运动控制器,做路径和电机联动的算法运算控制;
控制方式----有固定执行动作方式的,那就编好固定参数的程序给运动控制器;如果有加视觉系统或者其他传感器的,根据传感器信号,就编好不固定参数的程序给运动控制器。
机器人控制系统的基本功能
控制机械臂末端执行器的运动位置(即控制末端执行器经过的点和移动路径);控制机械臂的运动姿态(即控制相邻两个活动构件的相对位置);控制运动速度(即控制末端执行器运动位置随时间变化的规律);控制运动加速度(即控制末端执行器在运动过程中的速度变化);控制机械臂中各动力关节的输出转矩:(即控制对操作对象施加的作用力);具备操作方便的人机交互功能,机器人通过记忆和再现来完成规定的任务;使机器人对外部环境有检测和感觉功能。工业机器人配备视觉、力觉、触觉等传感器进行测量、识别,判断作业条件的变化。工业机器人控制系统
1、工业机器人控制系统硬件结构
控制器是机器人系统的核心,国外有关公司对我国实行严密封锁。近年来随着微电子技术的发展,微处理器的性能越来越高,而价格则越来越便宜,目前市场上已经出现了1-2美金的32位微处理器。高性价比的微处理器为机器人控制器带来了新的发展机遇,使开发低成本、高性能的机器人控制器成为可能。为了保证系统具有足够的计算与存储能力,目前机器人控制器多采用计算能力较强的ARM系列、DSP系列、POWERPC系列、Intel系列等芯片组成。
此外,由于已有的通用芯片在功能和性能上不能完全满足某些机器人系统在价格、性能、集成度和接口等方面的要求,这就产生了机器人系统对SoC(SystemonChip)技术的需求,将特定的处理器与所需要的接口集成在一起,可简化系统外围电路的设计,缩小系统尺寸,并降低成本。例如,Actel公司将NEOS或ARM7的处理器内核集成在其FPGA产品上,形成了一个完整的SoC系统。在机器人运动控制器方面,其研究主要集中在美国和日本,并有成熟的产品,如美国DELTATAU公司、日本朋立株式会社等。其运动控制器以DSP技术为核心,采用基于PC的开放式结构。
2、工业机器人控制系统体系结构
在控制器体系结构方面,其研究重点是功能划分和功能之间信息交换的规范。在开放式控制器体系结构研究方面,有两种基本结构,一种是基于硬件层次划分的结构,该类型结构比较简单,在日本,体系结构以硬件为基础来划分,如三菱重工株式会社将其生产的PA可携带式通用智能臂式机器人的结构划分为五层结构;另一种是基于功能划分的结构,它将软硬件一同考虑,其是机器人控制器体系结构研究和发展的方向。
3、控制软件开发环境
在机器人软件开发环境方面,一般工业机器人公司都有自己独立的开发环境和独立的机器人编程语言,如日本Motoman公司、德国KUKA公司、美国的Adept公司、瑞典的ABB公司等。很多大学在机器人开发环境(RobotDevelopmentEnvironment)方面已有大量研究工作,提供了很多开放源码,可在部分机器人硬件结构下进行集成和控制操作,目前已在实验室环境下进行了许多相关实验。国内外现有的机器人系统开发环境有TeamBots,v.2.0e、ARIA,V.2.4.1、Player/Stage,v.1.6.5.1.6.2、Pyro.v.4.6.0、CARMEN.v.1.1.1、MissionLab.v.6.0、ADE.V.1.0beta、Miro.v.CVS-March17.、MARIE.V.0.4.0、FlowDesigner.v.0.9.0、RobotFlow.v.0.2.6等等。从机器人产业发展来看,对机器人软件开发环境有两方面的需求。一方面是来自机器人最终用户,他们不仅使用机器人,而且希望能够通过编程的方式赋予机器人更多的功能,这种编程往往是采用可视化编程语言实现的,如乐高MindStormsNXT的图形化编程环境和微软RoboticsStudio提供的可视化编程环境。
4、机器人专用操作系统
(1)VxWorks,VxWorks操作系统是美国WindRiver公司于年设计开发的一种嵌入式实时操作系统(RTOS),是Tornado嵌入式开发环境的关键组成部分。VxWorks具有可裁剪微内核结构;高效的任务管理;灵活的任务间通信;微秒级的中断处理;支持POSIX.1b实时扩展标准;支持多种物理介质及标准的、完整的TCP/IP网络协议等。
(2)WindowsCE,WindowsCE与Windows系列有较好的兼容性,无疑是WindowsCE推广的一大优势。WindowsCE为建立针对掌上设备、无线设备的动态应用程序和服务提供了一种功能丰富的操作系统平台,它能在多种处理器体系结构上运行,并且通常适用于那些对内存占用空间具有一定限制的设备。
(3)嵌入式Linux,由于其源代码公开,人们可以任意修改,以满足自己的应用。其中大部分都遵从GPL,是开放源代码和免费的。可以稍加修改后应用于用户自己的系统。有庞大的开发人员群体,无需专门的人才,只要懂Unix/Linux和C语言即可。支持的硬件数量庞大。嵌入式Linux和普通Linux并无本质区别,PC上用到的硬件嵌入式Linux几乎都支持。而且各种硬件的驱动程序源代码都可以得到,为用户编写自己专有硬件的驱动程序带来很大方便。
(4)μC/OS-Ⅱ,μC/OS-Ⅱ是著名的源代码公开的实时内核,是专为嵌入式应用设计的,可用于8位,16位和32位单片机或数字信号处理器(DSP)。它的主要特点是公开源代码、可移植性好、可固化、可裁剪性、占先式内核、可确定性等。
(5)DSP/BIOS,DSP/BIOS是TI公司特别为其TMSCTM,TMSCTM和TMSC28xTM系列DSP平台所设计开发的一个尺寸可裁剪的实时多任务操作系统内核,是TI公司的CodeComposerStudioTM开发工具的组成部分之一。DSP/BIOS主要由三部分组成:多线程实时内核;实时分析工具;芯片支持库。利用实时操作系统开发程序,可以方便快速的开发复杂的DSP程序。
5、机器人伺服通信总线技术
目前国际上还没有专用于机器人系统中的伺服通信总线,在实际应用过程中,通常根据系统需求,把常用的一些总线,如以太网、CAN、、SERCOS、USB、RS-等用于机器人系统中。当前大部分通信控制总线可以归纳为两类,即基于RS-和线驱动技术的串行总线技术和基于实时工业以太网的高速串行总线技术。
智能机器人控制系统
(1)开放性模块化的控制系统体系结构:采用分布式CPU计算机结构,分为机器人控制器(RC),运动控制器(MC),光电隔离I/O控制板、传感器处理板和编程示教盒等。机器人控制器(RC)和编程示教盒通过串口/CAN总线进行通讯。机器人控制器(RC)的主计算机完成机器人的运动规划、插补和位置伺服以及主控逻辑、数字I/O、传感器处理等功能,而编程示教盒完成信息的显示和按键的输入。
(2)模块化层次化的控制器软件系统:软件系统建立在基于开源的实时多任务操作系统Linux上,采用分层和模块化结构设计,以实现软件系统的开放性。整个控制器软件系统分为三个层次:硬件驱动层、核心层和应用层。三个层次分别面对不同的功能需求,对应不同层次的开发,系统中各个层次内部由若干个功能相对对立的模块组成,这些功能模块相互协作共同实现该层次所提供的功能。
(3)机器人的故障诊断与安全维护技术:通过各种信息,对机器人故障进行
诊断,并进行相应维护,是保证机器人安全性的关键技术。
(4)网络化机器人控制器技术:目前机器人的应用工程由单台机器人工作站向机器人生产线发展,机器人控制器的联网技术变得越来越重要。控制器上具有串口、现场总线及以太网的联网功能。可用于机器人控制器之间和机器人控制器同上位机的通讯,便于对机器人生产线进行监控、诊断和管理。
盘点国内10大领先控制器厂商
1、华中数控
2.新松机器人
3.新时达
4.南京埃斯顿
5.汇川技术
6.广州数控设备有限公司
7.深圳市华盛控科技有限公司
8.广泰数控
9.固高科技
10.卡诺普
机器人控制架构
如果说驱动子系统是机器人的肌肉,能源子系统是机器人的心脏,那么控制和决策子系统就是机器人的大脑。这是机器人最重要、最复杂的一个子系统。
机器人是一种高度复杂的自动化装置。其控制子系统也是直接来源于自动化领域的其他应用,例如工厂自动化领域中所用到的处理器、电路以及标准。本章仅仅列举并对比了几种常见的、典型的控制系统拓扑结构,然后分析了几个典型的机器人控制子系统的构成,特别是详细说明了“创意之星”机器人的控制架构。
典型的几种机器人控制架构(ARCHITECHURE)
这里我们不讨论传统的工业机器人,主要